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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESFARCH MEMORANDUM

THE EFFECTS OF HIGH-LIFT DEVICES ON THE LOW-SPEED STABILITY
CHARACTERISTICS OF A TAPERED 37.5° SWEPTBACK WING OF
ASPECT RATTIQ 3 IN STRATGHT AND ROLLING FLOW

By M. J. Queijo and Jacob H. Lichtenstein
SUMMARY

An investigation has been conducted in the 6-foot circular test
section of the Langley stabillty tunnel to determine the effects of splilt
flaps, nose flaps, and slats in various combinations on the stabllity
characteristics in stralght and rolling flow of a 37.5° sweptback wing
of aspect ratio 3, taper ratio 0.49, and NACA 23012 airfoll sections
normal to the wing tralling edge. The Mach number and Reynolds mumber of
the tests were 0.13 and 1,020,000, respectively.

The results of the investigation indicate that the varilation of the
parameters with 1ift coefficient is essentially the same at low and -
moderate 11ft coefflcients for all the configurations tested. The high-11ft
devices extended the Inltial trend of the derivatives toc higher 1ift
coefficients, and in some cases also caused small displacements of the
curves plotted against 1lift coefflicient. Nose flaps were not as effective
as slats in extending the initial trend of the curves to high 1lift
coefflicients. Combinations of split flaps and slats produced effects
which were approximately equal to the sum of the effects of split flaps
alone and slats alone.

INTRODUCTION

Egtimation of the dynamic flight characteristics of aircraft requires
& knowledge of the component forces and moments resulting from the orienta-
tlon of the alrplane with respect to the alr stream and from the angular
velocity of the airplane about each of its three mxes. The forces and
moments resulting from the orientation of the airplane normally are
oxpressed as the static stabllity derivatives which are readlly determined
in conventional wind-tunnel tests. The forces and moments related to the
anguiar motlons generally are expressed as the rotary-derivatives and _
usually have been estimated from theory because of the lack of a convenient
experimental technique.
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In the Langley stability tunnel both the rotary and static stabililty
derivatives can be determined with about the same ease, and a comprehensive
program is now under way to determine the effects of varlous geometric
variables on both the rotary and statlc stability characterlstlics of wings
and complete alrplene configuratioms. A previous Investigatlon intoc the
effect of high-1lift devices 1n yawing flow was reported in reference 1.

The present investigation is concerned with the determinetion of the
influence of various high-lift devices on the staticard rolling character-
igtics of a 37.5° sweptback wing of-aspect ratlic 3, taper ratlo O.h9, and
NACA 23012 alrfoll sections normel to the wing trailing edge- The wing
was tested in combination with a circular fuselage.

SYMBOLS

The results of the tests are presented as standard WACA coefficlents
of forces and moments which are referred to the system of stability axes
(Pig. 1) with the origin at the projection on the plane of symmetry of the
guarter-chord point of the mean aerodymamic chord of the model (f1g. 2).
The symbols and coefficlents used hereln are defined as follows: S

cr 11t coefficient <EI§>
Cx longitudinal -force coefficlent— 3%)
\gs
Cy lateral-force coefficlent (ng)
qS
]
C, rolling-moment—coefficlent (Elii>
qSb
Cn yawing-moment coefficient (—%}
Q:
Cm pitching-moment coefficlent <égé>
L 1ift, pounds
X longitudinal force, pounds
Y. - lateral force, pounds
L' rolling moment, foot-pounds

N yewing moment, foot;pounds

.
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pltching mameﬁt, foot-pounds

v2
dynamic pressure, pounds per sguare foot G—E-—

mass density of air, slugs per cublc foot

free-gtream velocity, fest per second

wing area, square feet (3.93 sg ft)

wing span, feet (3.2h £1)

chord of wing, measured parallel to plane of symmetry, feet

b/o

mean aerodynamic chord, feet (1.096 ft) g- c2 dy
. . o

local wing chord messured perpendicular to the wing quarter-chord
lins, feet '

longitudinel distance from the root-chord leading edge to the
quarter chord at any spanwise station, feet

longitudinal distance from the root-chord leading edge to the
aerodynamic center, feet (0.904 £t)

perpendicular distance from the root chord to any polint on the
quarter-chord line, feet

aspect ratio (%2-

angle of sweep, poslitive for swsepback, degrees (37.50)
taper ratlio, ratio of tip chord to root chord (0.49)
é.ngle of yaw, degrees

anglie of attack, degrees

rate of roll, radians per second

wing-tip helixr angle, radians
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MODEL AND APPARATUS

The tests of the present investigation were made in the 6-Poot-circu-
lar test section of the Langley stabllity tummel.. Thlis section is equipped
wilth a motor-driven rotor which Imparts a twist to the alr stream so that-
a model mounted rigidly In the tunnel 1s in a field of flow similer to
that—which exlsts about an airplane in rolling flight (reference 2).

The wing used in this investlgation was made of mahogany and haed 37.5°
sweepback of the guarter-chord line, aspect ratio 3, taper ratio 0.49, and
NACA 23012 airfoil sections in planes normal to the wing trailing edge.

The wing was mounted in & circular fuselage s8¢ that 1ts root chord coin-
clded with the fuselage center line. Flgure 2 1s a drawing of the basic
model of—thls investigation. ; .

The high-1ift devices used with the wing-~fuselage combination were
slats, nose flaps, and split flaps (fig. 3). All slats had chords which
were 10 percent of- the wing chord (measured normal to the wing quarter-
chord line) and all split flaps had chords which were 20 percent of the
wing chord (normasl to wing quarter-chord line). The slats were made by
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bending strlips of ?:-"-6-1nch aluminmum sheet to £it the contour of the wing

leading edge- A _%-_m_.c_n-widg strip of aluplnum was. riveted to the lower

surface of the slat leading edge, and then the leading edge was rounded
smooth. This simplified consitruction probably did not resiult in ideal
slat contours, but 1t should be adequete for providing qualitative Indi-
catlons of the effects of slats on the parameters investigated.

The nose flaps were simulated by plecing the slat tralling edge
against the wing leading edge. Some overlap of the nose flap over the
wing leading edge was necessary for proper mounting and, therefore, the
nose-flap chord was about 9 percent of the wing chord.

A deflection of 60° was used for all the split flaps. Nose flaps
and slats were deflected 50°.

‘Tests were made of the 10 model conflgurations indilcated in figure k.
The word "wing" is applied to the wing-fuselage combination. The slats

referred to as 0.5-span slats extended from the 0.5-;— station to the wing
tip, and the split flap referred to as the 0.5-span spllit flaps extended
from the wing-fumselage Juncture to the 0-5—2— station.

The model was mounted on a slngle-strut support into which was built
8 slix-component straln-gage balance system by which all the forces and
moments on the model could be meagured. Filigure 5 ls a photograph of one
of the model configurations in the rolling-flow test section of the
Langley stabllity tunnel.

TESTS

Two series of tests were made. The first serles consisted of
stralght-flow tests In which the model yaw angle was varied from -5° to 5°,
and the angle of attack was varied from about -4° up to or slightly beyond
the stall angle. The second series of tests was made In rolling flow and
covered the same angle-of-attack range as that used in straight flow. The
rolling-flow teste were made at zero angle of yaw and simulated rates of
roll corresponding to values of pb/2V of 0, *0.0268, and £0.0802.

All tests were made &t a dynamic pressure of 24.9 pounds per square
foot, which corresponds to & Mach number of 0.13 and & Reynolds number of
1,020,000 based on the model mean aerodynamic chord (1.096 £t).
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CORRECTIONS

Approximate correcticnm, based on unswept-wing theory, for the effects
of the Jet boundaries have been applied to.thg angle of attack and the
longitudinal-force coéfficisnt. No tere corrections were applied to the
date nor were the dsta corrected for the effects of blocking or turbulence.
It -1s belleved that the omission of these corrections does not appreciably
affect the derivatives of the forces and mcments with respect to yaw angle
and wing-tip helix angle (reference 3).

RESULTS 'AND DISCUSSION

Presentation of Data

The longltudinal characteristics of the varlous model .conflgurations
are shown as curves.of a, Cy, and Cp, plotted against C1, in figures 6,

T, and B, respectively. The static lateral-stability parameters Copus

Cn*, and wa are plotted 1n figures 9, 10, and 11, respectively; and
the rolling derivatives C-LP, Cnp, and
13, end 1k, respectively. The data for the 10 model configurations are
divided into three groups. in each figure. The groups are (1) wing with
split flaps, (2) wing with slats or nose flap, and (3) wing with combi-
ngtions of split flaps and slats. The characteristics of the plein wing
are Included in each of the groups in order to provide a basis for com-
parison with results obtalned with various high-1ift devices installed.

CYP are presented 1ln figures 12,

Characteristics of Plain Wing

The characterilstics of the plain wing generally were good in that
there were no abrupt changes in any of the derivatives up to approximately
maximum 1ift. Testa of—other eswept wings (reference 4) had indicated
large changes in the derivatives at moderate 1ift coefficients. The .
more favorable characteristics of-the present wing probably are a result
of the moderate sweep angle in combination with a low aspect ratilo.

The pltching-moment curve of figure 8 is essentially linear up to
the stall and has a stable break at the stall.

The effective dihedral paramster Cj ¥ increased lineerly with 1lif't

coefficient up to approximately maximum 1ift (fig. 9) and then decreased
very rapldly beyond maximum 1ift. The directional stability of the
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model Cp  Increased approximately as the sguare of the 1ift coefficlent

(fig. 10) as might be expected from the theory of reference 5. At about
the maximum 1ift coefficient, Cp ¥ broke in a positive direction.

The demping in roll Czp (f1g. 12) showed some increase with 1ift

coefficient and, although this itrend i1s not indicated by theory, it has
been observed in other tests of swept wings (references L4 and 65 . Nega-
tive damping (posi'bive CIP was obtained beyond maximm 1ift, indlicatlng

that the model would autorotate if it were free to rotate. The yawing
moment due to roll GnP was negative at all 1ift coefficlients below

meximm 1lift but beceme positive beyond maximwm 1ift (fig. 13).

Some of the lmportant measured derivatives of the model are summerized
in table I. The experimental results are compared with the approximate
theory of reference 5 &nd, where possible, with the theory of Welssinger
(references 7 and 8). The comparison between’ theory and experiment gener-
ally is consldered to be falr with the exception of CDP/GL The differ-

ence between the theoretilcel and measured values of CnP {CL probably is

caused by the wing-tip suctlon forces assoclated with asymmetric load
conditions. Such forces were not accounted for in reference 5. Refer-
ence 9 indicates that good agreement between theoretical and messured
values of CHP/CL might be obtalned 1f the tip suctlon forces were

accounted for.

Effects of Split Flaps

The 0.5-gpan and 1.0-span split flaps produced lift-cocefficlent incre-
ments of about 0.33 and 0.48, respectively, and these increments remained
approximately constant, even to the maximum 1ift coefficlent. Tests of
other swept wings (references 1 and 10) have indicated that flap effective-
ness in producing 1lift generally decreases with increase In 11f%
coefficlent.

Split flaps increased the longitudinal force very appreciably and
made the pltching moment more negative. The slope of the plitching- |
moment curve was not appreciebly affected by the 0.5-span split flaps;
however, the 1.0-span flaps made the slope of the plichlng-moment curve
less negative. The 0.5-span split flaps generally made C, ¥ less positive

and the 1.0-span spllit flaps made C-L* more pogltlive. These displace-
ments of the sz—curve probably were caused by the shift in the center of
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pressure of the wing when flaps were deflected. The 0.5-span split flaps
shift the center of pressure inboard thus glving the 1if't forces on the
wing panels shorter moment arms and meking CZ\F less positive. The 1.0-

span split flaps shifted the center of pressure slightly outward (because
the flaps did not extend through the fuselage) and made the C-L* —-curve

slightly more positive.

The addition of split flaps gemerally caused minor displacements of
the. curves of the derivatives Cn'ilf’ Cnp, and GYP plotted against 1lift

coefficient. The actual mechanism of -the flap effect on these derivatives
is rather complicated and bas not yet been fully analyzed. At low and
moderate 11ft coefficients. the derivative C-LP was almpst unaffected by

the addition of split flaps. In thie case the explanatlon seems to be
straightforward, ‘since the addition of split-flaps would be expected to
have little effect on either the magnitude or the location of the center
of pressure of the incremental load caused by rolling. For the model
investigated, the addition ‘of split flaps invariasbly caused, an extension
to higher 1ift coefficients of the trends in the dérivatives that were
noted at low 1llft coefficilents for the plain wing.

Effects of Slats and Nose Flaps

The addition of slats or nose flaps caused the 1lift curve to be
extended to higher angles of attack, thus providing increments in maximum
1ift coefficient amounting to 0.18 for the 0.5-span slat, 0.39 for the 1.0~
span slat, and 0.27 for the 1.0-span nose flap. The nose flsp and slats
tepded to move the aerodynamlc center slightly forward, as 1s indicated by
the decreased negative slopes of —the pitching-moment curves (fig. 8). A
forward shift in aerodynamic center would be expected since the nose flap
and slats effectively extend the leading edge of the wing forward.

In general, the leading-edge slats and nose flsps caused very little
dispiacement of the curves for the verious stabllity derivatives at low
and moderete lift coefficlents. The primary effect appeared to amount to
extensions of the linear (or smooth) portions of the curves to higher 1ift
coefficlents; however, the nose flap was not as effective as the slats in
maintaining the linear trends to higher 1ift coefficisesnts. A relatively
large displecement; in & negative directlon, of the Cy _t.y-curve resulted

from the addition of the 1.0-span slat. The slats and nose flaps caused
small increases in the damping in roll egative C7,> at moderate 1lift
Y

coefficients. This probably results from the effective increase in wing
area that accompanied the addition of either the nose flaps or slats.
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Effects of Combinations of Split Flaps and Slats

In general, combinations of split fleps and slats hed two major
effects on the wing characteristics. One of these effects was the exten-
sion of the linear portion of the curves of wing charascteristics to higher
1ift coefficlents, and the other effect was the displacements of some of
the curves. The data of figures 6 to 14 indicate that these extensions
and displacements are approximately what would be expected from the results
obtained for the effects of split flaps alone a&nd slats alohe. Figure 6
indicatss that the combination of the wing with 1.0-span slats and 0.5-gpan
Bplit Tlaps produces very nsarly the same maximum 1lift coefficient as the
wing with 1.0-span slats and 1.0-span split flaps, however, the pitching-
moment varlation at the stall 1s not as satisfactory for the former
combination as for the latter combination. .An effect shown by the combi-
nation of split flaps end slats (not shown by slate alone or split flaps
alone) is the change in lift-curve 8lope at low 1lift coefficients for some
of the configurations (fig. 6). It is believed that the increase in damping
in roll at low lift coefficients of some of the configurations (fig. 12) is
asgocliated with the changes in the lift-curve slope.

CONCLUSIONS

The results of tests made to determine the effects of high-1ift
devices on the stabllity parameters of a tapered 37-5° sweptback wing of
aspect ratic 3 1in stralght and rolling flow have led to the following
conclusions:

1. The variation of the parameters with 1ift coefflclient 1s essentially
the same, at low and moderate 1lift coefficients, for all the conflgurations
tested.

2. The high-1ift devlices extended the initial trend of the parameters
to higher 11ft coefficients and in soms cases caused small displacements
of the curves plotted ageinst 1ift coefficient.

3. Nose flaps were not as effective as slats in extending the initial
trend of the curves ko high 1ift coefficients.

4. Combinations of split flaps and slats produced effects which were
approximately equal to the sum of the effects of split flaps alone and
slats alone.

Langley Aeronautlical Laboratory
Natlional Advisory Cammittee for Aeronautics
Langley Field, Va.
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" ’ ' TABLE T

COMPARTISON OF MEASURED AND CALCUTATED PARAMETERS FOR THE FLATN WING

(reference 5) (references 7 and 8)

Cr,, 0.053 0.0k 0.048

c Nelo) i d 0035 | 000 ===
1y /CL

Cnp v /CL2 -.0012 -.0010 | 0 —-ee-

Czp -.250 -.230 -.237

c, /C -.090 -o7 | mm=--
/%

C L5 B S
o [
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Figure 1.- System of stabllity axes. Arrows indicate positive directions
of forces, moments, and displacements.



KACA RM No. L8IO03 13
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Pigure 2.- Drawing of wing-fuselage combination.
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‘Figure 3.~ 'Details of split flaps and slats.
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Figure 6.- Effects of high-lift devices on the variation of angle of
attack with 1ift coefficient for a tapered 37.5° sweptback wing.
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Figure 7.- Effects of high-lift devices on the variation of longitudinal
force with 1ift coefficient for a tapered 37.50 sweptback wing.
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